
The theore t ica l  and numer ica l  solutions coincided to an accuracy  of 10 -4 at step values of h 1 = 0.09, 
h 2 = 0.1. Twelve points in t ime  with a step At = 0.1 were  calculated.  T ime requi red  for  calculating one 
var iant  was 5 mln. 

N O T A T I O N  

Y and 4 ,  coefficients;  u, t e m p e r a t u r e ,  concentra t ion,  e tc .  ; x and y ,  coordinates;  t ,  t ime;  A, Laplace 
opera tor ;  f(x, y) ,  initial function; g(x, y ,  t) and T t (y, t);  T2(x, t); T3(y, t); T4(x, t); ~ol(y, t); ~02(x, t); ~03(y, t); 
~4 (x, t ) ,  specif ied functions; sl and s2, dimensional i ty  coefficients  of data blocks ; A (0), A (t), A (t-t),  mat r ices  
of a lgebra ic  sys tem of equations for  boundary conditions of f i r s t  sor t ;  B(~ B (t), B t - t  ma t r i ces  of sys tem of 
equations for  boundary conditions of second sor t ;  gi ,  vec tors  of r ight-hand sides;  E,  unit matr ix;  ~ ,  /3, e le -  
ments of th ree-d iagonal  matr ix ;  ~j, Pj_2 t+l, uj+2t+t, vec tors  of des i red  quantit ies;  qi(t), pi (t), t = 1 . . . . .  s 
vectors  in cycl ical  reduction;  h t and h 2, step of space grid;  At, s tep in t ime;  a,  b, dimensions of rec tangle ;  
N t and N2, number  of grid points along x and y axes ,  respec t ive ly ;  zn j ,  grid;  unj, grid function; a,  r ea l  
p a r a m e t e r  (weight). 
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S O L U T I O N  OF  T H E  N O N L I N E A R  I N V E R S E  T H E R M A L  

C O N D U C T I V I T Y  P R O B L E M  BY T H E  I T E R A T I O N  M E T H O D  

O.  M. A l i f a n o v  a n d  V.  V.  M i k h a i l o v  

A regula r  i terat ion a lgor i thm is const ructed for  the case  of a nonlinear gene ra l i zed  thermal  
conductivity equation for  determinat ion of the nonstat ionary t h e rm a l  flux. The a lgor i thm is 
based on the method of conjugate gradients .  

In exper imenta l  studies of nonstat ionary the rma l  p r o c e s s e s ,  it becomes neces sa ry  to calculate the rma l  
boundary conditions f rom t empe ra tu r e  measurements  within bodies (the inverse  t he rma l  conductivity boundary 
problem).  The well-known incor rec tness  of the formulat ion of this inverse  problem,  which manifests  i t se l f  
as a strong sensi t ivi ty of the resu l t s  to e r r o r s  in the input information,  requi res  the development of approxi-  
mate  a lgor i thms which can suppress  the instabil i ty of the resu l t s  and maintain requi red  accuracy .  

We will cons ider  the inverse  problem for  a nonlinear genera l ized  the rmal  conductivity equation in the 
region {0 _< x _< b, 0 _~ t _< tm}. It is r equ i red  that the dependence of t he rma l  flux ql {t) on the left-hand boun- 
d a r y  on the known t e m p e r a t u r e  f(t) and the t he rma l  flux q2(t) on the r ight-hand boundary be de te rmined .  Initial 
conditions a r e  specif ied.  Thus ,  we have 

OT 0 (~.(T) OT ) aT q_ (1) 
C(T) 0-----~= 0--~- ~ d-K(T) Ox ep(T), O<~x.<b, O<t~t. .  

T (x, 0) = ~ (x), (2) 
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0T~'(0 ,  
- ~ .  ( r  (o, t)) "- - - - - -~ '  = q, (t) - ?, 

Ox 

- -  ~ ( r  (0, t) Or  (b, t) --_ q, (t), 
Ox 

(3) 

(4) 

r (b, t) = I (t), (5) 

where C(T), MT), K(T), ~(T),  ~(x), q2(t), f(t) a r e  known functions.  

We now r e p re sen t  the incor rec t ly  formula ted  problem of Eqs.  (1)-(5) as an optimum cent ra l  p roblem,  
i . e . ,  we must  choose a ql(t) for  conditions (1)-(4) so as to minimize  the function 

ira 
J (q, (t)) = j" IT (b, t) --  [ (t)12dt. 

0 

(6) 

We will seek  the solution of this ex t remal  problem by the conjugate gradient  method. This method has 
a superUnear  convergence ra te  and is quite economical  in t e r m s  of computation t ime.  Compared to the meth-  
od of most  rapid descent  o r t h e  method of possible  f i r s t - o r d e r  d i rec t ions ,  the conjugate gradient  method is 
significantly less  dependent on the specif icat ions of the ex t remal  problem,  i . e . ,  on the fo rm of the region in 
which the solution is sought [1]. It should also be noted that this method effectively permi t s  commencement  
of the s e a r c h  for  a solution f rom a f a r - r e m o v e d  initial approximat ion,  and, while gradual ly reducing the ra te  
of convergence ,  makes it possible  to  naccurate ly"  approach the requ i red  approximate  solution [2]. 

We will now obtain a formula  for  calculation of the gradient  of function (6). We assume t h a t t h e  t he rma l  
flux ql(t) var ies  by a smal l  amount u(t). Then t e m p e r a t u r e  T(x,  t) var ies  by an amount v(x, t ) ,  which sat isf ies  
the following 

0 v -  = A (x, t) 02v 0v (7) c9---[- ~x2 + B ( x ,  t ) - - ~ x + D ( x ,  t)v, 0 < x < b ,  0 < t < t , , ,  

v(x,  o) = o, 

_ ox (o, t) v (o, t) - -  x (o, t) ov (o, t) = u (t), 
Ox Ox 

ox O, t) v (b, t) - -  ~ (b, t) Ov (b, t) = o, 
Ox Ox 

(8) 

(9) 

(lO) 

where 

a(x, t)= ~.(x, t)/C(x, t); 

B(x,  t ) =  ( 20~(X,ox t) + K(x ,  t) ) /C(x ,  t); 

D (x, t)= ~{O~)~(X'ox~ t) + OK(X,ox t)+o~(X,or t) OC(X,ot t))/c(x' t). 

The functions A(x, t), B(x, t), D(x, t), M0, t), Mb, t) are defined by the solution of Eqs. (1)-(4). Below, to 
reduce the complexity of notation, we will retain the arguments of the functions only where needed for clarity. 
For the Linear component of the function increment, we have 

AJ -----t.[m2 [T (b, t) - -  f (t)] v (b, t) dr. 
0 

In o rde r  that function (11) take on an ex t r ema l  value,  it is necessa ry  that 

(ii) 

a l  = O, (12) 

where 
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tm 

Io = AJ = 2 f IT (b, t ) -  [ (t)l v (b, t) dr, 

b 

I , =  .f l](x, O) v(x, O) dx 
0 

fm 

-{- ~ ~l(O, t)[u(t)-} 0)~(0, t)v(O, t)+ )v(O, l) Ov(O' l) ]dl ----g;- ---~-j 
0 

tm 

0 
tm b 

Iz Ox z -~x + D v -  0-7 
0 0 

and ~?(x, 0), 7(0, t ) ,  ~(b, t ) ,  $(x, t) a r e  undefined Lagrange fac tors ;  AI is the complete  variat ion of the func-  
tion I. 

We will cons ider  the individual t e r m s  of the left  side of Eq. (12): 

All = 

+ ~  

tm b 

tm 

0 

tm 

a l  o = 2 .~ [T (b, t) - -  / (t)l av (b, t) at, 

0 
b t m 

S1](X, O)~v(X, O) dx -~- ~'1](0, t )[6u "~ OXO'--~ (M) 
0 0 

tm 

0 

b 
ov o (A,) e,t, + B , ~  "-" (,z~)tt~=g 

- - d ;  ~ . o  ~ 0 
dx. 

Substituting AI0, AI1, and AI 2 in Eq. (12), we obtain an express ion  containing t e rm s  dependent on the double 
in tegral  and integrals  over  the boundaries of the region under considerat ion.  Considerat ions usually employed 
in var ia t ion calculation allow us to es tabl ish that fo r  the s ta t ionary condition (12) to be fulfi l led, it is neces -  
sa ry  to set  equal to  ze ro  each of the groups of t e r m s  upon variat ion [3]. Thus,  omitting in te rmedia te  calcula-  
t ions ,  we can wri te  the condition of the boundary problem conjugate to that of Eqs.  (7)-(10). 

o~ 0~_ (A,) - a at = ~ x  ( B , ) + D , ,  0 < x < b ,  O < t ~ t , ~ ,  (13) 

q~(x, tin) = 0, (14) 

0X (0, t) A (0, t ) ,  (0, t) ~ x  Ox X (0, t) + (A (0, t),~ (0, t)) - -  B (0, t) * (0, t) =0, (15) 

OX (b, t) A (b, t) X0 (b, l) a~- 
Ox k(b, t) + _ _  (A(b, t ) , ( b ,  t ) ) - -B (b ,  t)~(b,  t ) = 2 I T ( b ,  t ) - - l ( t ) ] .  0-6) 

Then for  the inc rement  of Eq. (11) with considerat ion of Eqs.  (15), (16) we obtain 

fma 

hJ = 2 j" IT (b, t) - -  [ (t)l V (b, t) dt 
0 

~ ~ ~ T + (A,) - -  B ,  ,=o dt = S, (~) e,~ + o j" S,(~) e~, (17) 
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where 

tr~ 

�9 v ( A , )  - -  Bq~) dt, Si(x) = ~ -~Z ~ -  + ~  
0 

tra 

S~(x) = ~x Ox X Ox (A,)--L B,  dr. 
0 

F u r t h e r ,  using the equation for  the conjugate var iable  (13) and integrating by par ts  with considerat ion of Eqs.  
(8), (14), (7), we have 

b b tm b tm 

St (x) dx = dx , , A ~ + B -~x dr+ dx v ~ k Ox ~. ] 
0 0 0 0 

Integrating by par t s  with use  of Eqs .  (9), (10) gives 

b tm b 

- ~, ~ u (t) dt - -  S, (x) dx. 
0 

as) 

F r o m  Eqs.  (17) and (18) it follows that 

lm 

AJ = j" 

0 

A (0, t ) ,  (0, .t) u (t) dt. 
X(O, t) 

(19) 

Now Eq. (19) is the di f ferent ia l  [4] of Eq. (6), the gradient  of which can be writ ten in the fo rm 

d' (qi) = A ( 0, t) • ( 0, t)lX ( 0, t). (20) 

However ,  as was noted in [5], with use of this fo rmula  to  calculate  the gradient  uniform convergence is absent 
-- the gradient  J '(qt) deviates f r om exactness  because  of condition (14) in some neighborhood of the point t = t  m.  
The accuracy  of establishing the t he rma l  flux in this region is de termined to a significant degree  by the choice 
of the initial  approximation for  qt(t). 

In o rde r  to reduce  the effect  of condition (14) on convergence ,  we will seek  a solution of the equation qt(t) 
consist ing of a continuously dlfferent iable  function corresponding to  the condition 

t 

o,(O = S dq,d~ d~. 
0 

(21) 

With considerat ion of Eq. (14), we can wri te  

and then Eq. 

d ( A (0, , ) ,  (0, "0 d ,  -- A (0, t ) ,  (0, t) = j,  (q, (0), dt ,J zCO, "0 x(o, t) 
tra. 

(19) can be r ep resen ted  in the fo rm  

tm t tm tm 

j" d~ (J" A(O' x)*(O' T) dT) u ( t ) d t = j  " T) ~ A(O' T)*(O' T) 0, T) AJ 
0 Ira 0 t 

Thus,  we obtain a new formula  for  the gradient  of Eq. (6) 
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Fig .  1. Es tab l i shment  of t h e r m a l  f luxes q, W / m  2-10 -5 for  exact  input data: so l -  
id line, exact  solution; dashed l ine,  approximat ion  (25 i te ra t ions) ,  t ,  t i m e ,  s ec .  

Fig.  2. Es tab l i shment  of t h e r m a l  flux q, W / m  2.10 -s for  sawtooth per turbat ion 
of input data f(t), deg: 1) exact  values of input data;  2) per turbed  (Af = +0.1 fmax ,  
j = 1, 2, . . . ,  m); solid cu rve ,  solution corresponding to exact  input data; dashed 
l ine,  approx ima te  solution with pe r tu rbed  input data (eighth i tera t ion) .  

f 

t 

(22) 

To calcula te  J ' (dql /d t )  it is n e c e s s a r y  to so lve  succes s ive ly  boundary p rob lems  (1)-(4) and (13)-(16). 

I tera t ion approx imat ions  for  the unknown function a r e  const ructed by the method of conjugate gradients  with the 
following fo rmulas :  

q ~ + ' = q ~ - - ~ r  ~, k = 0 ,  1, 2 . . . . .  

t 

rk = j" pk (~) dr, P~ (~) = - -  ] ;  + PEP*-' (T), (23) 
0 

f& = ~' (J~ - J ; _ .  J;) at  J; ,) dr, po = o, 
/ 

where Jt k is calculated with Eq. (22); q~{t) is the known init ial  approximat ion .  

The coeff icients  a k  defining the value of the s tep  in the t rans i t ion  f rom qk to ql k+l a r e  found f r o m  the 
condition min J ( q l k - - a r k ) .  It should be noted that  the method for  solution proposed he re  a s s u m e s  a known 

a 
t h e r m a l  flux value at the initial  moment  of t i m e  ql(0) = q~(t). We will now turn to the ma jo r  question of a 
choice of some  reasonab le  approx imat ion ,  i . e . ,  we will cons ider  the conditions for  complet ion of i terat ion 
p roce s s  (23). Calculation exper iments  have revea led  that upon f ree ing of the input data f(t) and q2(t) f r o m  
fluctuation e r r o r s  (smoothing the exper imenta l  information) sequence  (23) does not give diverging sequences ,  
and to shor ten the s e a r c h  p roce s s  one of the t rad i t iona l  check conditions may be used,  e . g .  : 

t m  

J(q~+')<e,, [(J'q~k+l)Zdt~.~, max ] Tk+t (b, O - f ( t ) l  ~<~3; 
b t 

where s s ~3 are small positive numbers. 

However, i f  function f(t) contains a sufficiently marked oscillating component, then with increasing ap- 
proximation to the solution cor responding  to per tu rbed  input data ,  the r e su l t s  will lose  a r egu la r  c h a r a c t e r  
m o r e  and m o r e .  This is the na tura l  behavior  of an i tera t ion solution of the inco r rec t ly  formula ted  inve r se  
p rob lem.  
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Following [2, 5] we will l imit  the i terat ion sequence (23) to some number  k =k* ,  at which the inequality 
j(q~*+l) < ~2 is f i r s t  fulf i l led,  and choose the length of the s tep in the direct ion rk* f ro m  the condition 

m ~  {J (q~" - -  ~r~' )  - -  ~2}, 
tn 1 

where  e 2 is the in tegra l  accuracy  of specifying the exper imenta l  information ( 52= .t <~2(t)dt ; a is the mean 
square  e r r o r  of the t e m p e r a t u r e  measurements ) .  0 

The proposed i terat ion method together  with choice of the unknown function by the condition of matching 
the nonbinding to the accu racy  of the input data is r egu la r ,  and guarantees  stable r e su l t s .  A theore t ica l  jus t i -  
fication of this approach and its re la t ionship  to  the regular iza t ion method [6] and the nonbinding pr inciple  [7] 
may be found in [8]. 

A p rog ram was writ ten on the basis of the above method and calculations pe r fo rmed  for  a number of 
methodical  examples .  The boundary problems (1)-(4), (7)-(10), and (13)-(16) were  solved numer ica l ly  by an 
implici t  d i f ference  method. F igures  1 and 2 show resu l t s  for  s eve ra l  examples with the following initial  data: 

A (T) = ~.(T)/C(T) = 0.4.10 -e --0.143.10-g.T + 0.408.10-12.T 2, m2/sec. 

X(T) ----- 0.721 + 0.288- 10-~.T + 0.15.10-~.T2,W/m/deg ' 

K (T) = q~ (T) = 0, b = 0.003 m, tm= 20 sec. 

The initial  t empe ra tu r e  distr ibution was taken constant and equal to  ze ro ,  with the internal  boundary 
(x = b) the rmal ly  insulating (q2(t) = 0). F o r  the exact and "exper imenta l"  information we used the t empe ra tu r e  
on the inner boundary,  obtained by numer ica l  solution of the d i rec t  problem for  a specified law of change of 
ql(t). After  per turbat ion of the inner  t e m p e r a t u r e  by some ru le  the inverse  problem was solved. P r a c t i c a l  
analysis  of the c o r r ec tne s s  allows us to  conclude that the method is stable with r e spec t  to per turbat ion of the 
"input" data,  and that the resu l t s  a r e  independent of the initial  approximation.  

N O T A T I O N  

C f r ) ,  volume heat capacity;  k f r ) ,  t h e rma l  conductivity coefficient;  K(T), f i l t rat ion coefficient;  ~(T),  
dis t r ibuted heat sou rce  (drain); T ,  t empera tu re ;  x,  coordinate;  t ,  T, t empera tu re ;  ~ (x), initial  t em p e ra tu r e  
distr ibution;  q, t he rma l  flux; b, r i gh t -hand  boundary along x; t m ,  r ight-hand boundary of t ime  interval;  f(t), 
input data; J(q), minimized c r i te r ion ;  v ,  t e m p e r a t u r e  increment ;  u, change in t h e rm a l  flux; I, expanded func- 
tion; k, number  of i tera t ion;  ~, a ,  p a r a m e t e r s  of conjugate gradient  method; e, input t em p e ra tu r e  e r r o r .  
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